
Thermal Dissipation IV
Differentials, Reciprocity and Thermoelectricity

“Everything should be as simple as it can be, but not simpler.”   —  A. Einstein

This essay is the fourth in a series on thermal dissipation.1   TD-I and TD-II were concerned primarily
with  fundamentals  of  steady-state  dissipation,  with  derivations  mainly  in  the  latter.   Steady-state
systems are expected to relax towards equilibrium when external constraints are removed.  To balance
this relaxation, constant work or dissipation is required and appears as a loss of free energy supplied by
external sources.  

Theorem:  The  thermodynamic  steady  state  is  that  configuration,  compatible  with  boundary
constraints,  requiring  the  minimum  amount  of  work  from  external  sources  to  counter  relaxation
towards equilibrium.

Only in isothermal systems is this equivalent to a principle of minimal entropy production.  TD-III
focused on the application of this principle to simple systems with energy transport involving coupled
radiative and non-radiative processes.  As photons are bosons, any differential volume element may
contain radiative fluxes traveling in multiple directions, while molecular or electron-based fluxes can
not.

This  discussion  focuses  on  the  interactions  of  coexisting  dissipative  processes  in  steady-state
thermodynamic systems.  The interference of thermal  and electric  fluxes  has long been a  topic of
thermodynamic interest.  Should couplings exist, we may anticipate dissipation shall be reduced below
the sum total of individual components.  Onsager was first to address this problem theoretically and, in
1931, offered proof of a Reciprocity Theorem.2   His proof  for  linear dissipative systems was based on
analogy  with  a  detailed  balance  description  of  microscopic  reversibility  in  mechanical  systems.
Classical thermodynamic reasoning had been phenomenological and the need to invoke microscopic
statistical arguments  broke with this tradition.  

At a most fundamental level, thermodynamics presumes the existence of thermodynamic states.3  By
definition these possess path-independent properties.  The thermodynamic properties of a water sample
are independent of its history.  Path-independence implies the existence of an exact differential and
temperature,  should  it  exist,  is  the  integrating  factor  required  for  exactness.4  In  elementary
thermodynamic texts, this appears in the definition of entropy, δS=δ q/T .

The following discussion shall be over well-furrowed ground, but restricted to cases with non-divergent
flux functionals, thereby allowing reduction of volume integrals to explicit functions of surface fluxes
and potentials and, in principle, susceptible to physical measurement. 

1 http://quondam.000webhostapp.com/Notebook.html
2    L. Onsager, Reciprocal Relations in Irreversible Processes. I., Phys. Rev. 37, 405–426 (1931) 
3    https://en.wikipedia.org/wiki/Thermodynamic_state
4 https://en.wikipedia.org/wiki/Integrating_factor
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In TD-II we examined the expression
J U (r ) + J X (r ) = J F (r ) + T (r ) J S (r )  (1)

JU(r) is the flux of thermal energy.  It typically includes those energies contributing to a system's heat
capacity.  JX(r) is the energy flux associated with coexisting dissipative processes.  For an electric flux,
noting that current flux is non-divergent,

J X (r ) = J V (r )⋅∇ V (r ) = ∇⋅[ J V (r )V (r )]  (2)

The parameters  on  the  left  side  of  Eq.  1 are  physical  and expressible  in  mechanical  terms.   The
parameters on the right are thermodynamic, temperature and fluxes of free energy and entropy.  The
local steady-state constraint is

∇⋅(J U (r ) + J X (r )) = 0  (3)

As shown in TD-II, it then follows that5

∇⋅( J F(r )−J X (r )

T (r ) ) = 0  (4)

The volume integral of this non-divergent function is readily transformed to a surface integral.  For a
two-terminal  cell,  with  entering  fluxes  at  terminal  1  assigned positive  signs  and exiting  fluxes  at
terminal 2 negative ones,  the resulting expression for free energy dissipation may be written as

D = (J F1 − J F2) =
(J F1− J X1)

T 1

(T 1−T 2) + ( J X1 − J X2)

= J T ΔT + J V ΔV

 (5)

where 

J T ≡
J F1−J X1

T 1

, ΔT ≡ T 1−T 2 , ΔV ≡ V 1−V 2  (6)

No assumptions of linearity, homogeneity or geometry have been made.6  Equation 5 is the sum of two
terms, the first the Carnot dissipation for a thermal flux between thermal reservoirs, the second the
dissipation of an electric circuit.

Couplings  arises  when  we  introduce  functional  relationships  between  fluxes  and  potentials,  the
simplest being linearity, i.e.

J T = a11ΔT + a12 ΔV
J V = a21ΔT + a22ΔV

 (7)

with coefficients independent of  ΔT  and  ΔV.  Their combined dissipation becomes (Eq. 5)

D(ΔT ,ΔV ) = a11(ΔT )
2
+(a12+a21)ΔT Δ V + a22(ΔV )

2  (8)

In principle, dissipation measurements in which both  ΔT  and  ΔV  are specified  will provide values for
a11 , a22  and  a12 + a21 .  As dissipation must be positive,  a11 and a22  are positive and equivalent to
thermal  and  electrical  conductivities.   The  central  term  will  be  negative  should  coupling  reduce
dissipation.  

5 Thermal Dissipation II, Note C.
6 It is an implicit assumption that each bounding surface region is of uniform temperature and electric potential.



Let us now consider the two cases for which either JT  or  J V  is zero.  Equation 5 indicates these will
have the same dissipation as cases for which ΔT=0  and  ΔV=0.

Case JT = 0:
ΔT = −(a12 /a11)ΔV

J V =
a11 a22−a12a21

a11

ΔV

D(ΔT ,ΔV ) = J V ΔV = (a11a22−a12 a21

a11
)(ΔV )

2

 (9)

Case JV = 0:
ΔV = −(a21/ a22)ΔT

J T =
a11a22−a12 a21

a22

Δ T

D(ΔT ,ΔV ) = J T Δ T = (a11 a22−a12a21

a22 )(Δ T )
2

 (10)

Our dissipation theorem states that all internal parameters,  e.g.  potential and flux distributions, will
adopt configurations minimizing total dissipation while satisfying boundary constraints.  Suppose a12

and a21  are such parameters.  Should D(ΔT, ΔV) in Eqs. 8-10 be stationary with respect to variations of
a12 and a21,

δ(a12 + a21) = δ a12 + δa21 = 0
δ(a12 a21)= a12δa21 + a21δa12 = 0

 (11)

We conclude a12 = a21 , the condition of reciprocity, and Equations 9 and 10 show dissipation is, as
expected, reduced by these terms.

Alternatively,  suppose  all  extensive  differentials  scale  proportionally,  perhaps  with  surface  area.
Differentiation of Eq. 5 yields  δD, by definition exact, which may then be partitioned into two exact
differentials each equal to δW.

δ D − ΔT δ J T − ΔV δ J V = δW = J T δT + J V δV  (12)

As  δW is exact, we can assert that7

(∂ J T

∂V )
T

= (∂ J V

∂T )
V

 (13)

again giving us a12 = a21 when linearity is assumed  (Eq.  7).   It may be noted that Eq.  13, is not
restricted to an assumption of linearity. 

7 https://en.wikipedia.org/wiki/Exact_differential
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There are several thermoelectric coefficients which are defined as partial derivatives in the linear limit.8

The Seebeck coefficient,  S(volts/deg),  measures the change in open-circuit potential due to thermal
gradients.  From  Eq. 10, 

S (volts/deg ) = −(∂ V
∂ T )

JV =0

= a21/a22  (14)

The Peltier coefficient, Π(volts), measures the change of thermal energy flux due to a change of electric
current given isothermal boundary conditions,

Π(volts ) = T(∂ J T

∂ J V
)

ΔT =0

= T (∂ J T

∂V )
ΔT =0(

∂V
∂ J V

)
ΔT =0

= T
a12

a22

 (15)

The Thomson coefficient is defined as

K ≡
d Π

dT
− S  (16)

When reciprocity is assumed, Thomson's thermoelectric relations follow:

K = T
dS
dT

      ;     Π = TS  (17)

The generality of  Eq. 5 implies a correspondence principle for diverse physical phenomena.   Should
we wish to examine the coupling of thermal and mass fluxes, the latter being a non-divergent function,
we need only let

D = J T ΔT + J M Δ(P /ρ)  (18)

and arrive at similar results with  ΔV replaced by Δ(P/ρ), the pressure/density ratio difference for two
bounding reservoirs.9

Onsager's 1931 analysis of the linear dissipative region around equilibrium remains the only generally
accepted description for non-equilibrium thermodynamics.  It  is based on the rate of local entropy
formation,

ds
dt

= ∇⋅J S = J U ⋅∇(1/T )  (19)

as a first-order perturbation of an equilibrium system and establishes extremal principles  for both
steady  and  non-steady   states.10  The  choice  between  extremals  based  on  dissipation  vs. entropy
formation considerations depends on one's definition for the steady state.  A micro-canonical constraint,

∇⋅J U=0 , has no fluctuations and consequently no extremals.  The global canonical constraint

∭d τ ∇⋅J U (r ) = 0  (20)

8 https://en.wikipedia.org/wiki/Thermoelectric_effect
9 Should P/ρ be proportional to T and  Δ(P/ρ)  and ΔT therefore not independently variable,  Eq. 18 is reduced to a single 

term.  Ideal gases have null thermal conductivities and viscosities and are inherently nondissipative.
10 Parenthetically, it should be noted that,  if instead of Eq. 4, we had used ∇⋅J S (r ) = ∇⋅ (JU (r )/T (r )) to calculate 

the integrated rate of entropy formation, we would have found Ṡ=D /T 2 , with D given by Eq. 5, and reached the 
same conclusions.
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leads to dissipative extremals whereas 

∭d τ (∇⋅J U (r )

T (r ) ) = 0  (21)

leads to extremals for entropy formation.  Our analysis is based upon Eq. 20.  Despite nearly a century
of effort, no significant progress has been made in the search for extremal behavior beyond the linear
regime.11

“Until recently, prospects for useful extremal principles in this area have seemed clouded. C. Nicolis
(1999) concludes that one model of atmospheric dynamics has an attractor which is not a regime of
maximum or minimum dissipation; she says this seems to rule out the existence of a global organizing
principle, and comments that this is to some extent disappointing; she also points to the difficulty of
finding  a  thermodynamically  consistent  form  of  entropy  production.  Another  top  expert  offers  an
extensive discussion of the possibilities for principles of extrema of entropy production and of dissipation
of energy: Chapter 12 of Grandy (2008) is very cautious, and finds difficulty in defining the 'rate of
internal entropy production' in many cases, and finds that sometimes for the prediction of the course of a
process, an extremum of the quantity called the rate of dissipation of energy may be more useful than that
of the rate of entropy production; this quantity appeared in Onsager's 1931 origination of this subject.
Other writers have also felt  that  prospects for general global extremal principles are clouded.  Such
writers include Glansdorff and Prigogine (1971), Lebon, Jou and Casas-Vásquez (2008), and Šilhavý
(1997). “

While there is certainly a correlation between the expressions we have derived and Onsager's results,
they  are  by  no  means  identical.   Our  description  applies  to  externally  observable  properties  of
thermodynamic steady-state systems, properties which are independent of the paths by which these
states are reached.  Onsager's analysis is based on the rate of entropy formation within  internal volume
elements.  In a magnetic field, however, some forces are velocity-dependent,  time-reversal symmetry
no longer holds and  reciprocity is presumed broken.  For our two-terminal system with insulating
sides, transverse electric fluxes induced by an applied magnetic field will charge these sides until the
resulting electric field neutralizes this flux as a steady state is reached and we anticipate reciprocity to
persist. 

In TD-III, we discussed a hypothetical Carnot cell containing a metallic barrier at some intermediate
position.  With this barrier unconnected and bounding temperatures of 100K and 10K, we measure a
100W  energy  flux.   Dissipation  is  90W,  entropy  formation  9  W/K.   We  note  that  the  barrier
temperature, which is position dependent, happens to be 50K.  We then connect the barrier to a 50K
external reservoir, in effect creating a three-terminal cell with two tandem Carnot cells, 100K→50K
and 50K→10K.  No net energy enters the cell, the rate of entropy formation remains unchanged, but
dissipation has increased to 130W!  The resolution of this seeming paradox is basically a difference
between internal energy and free energy fluxes, J U= J F+TJ S .   From a thermodynamic perspective,
50W of dissipated energy is being exchanged for 50W of free energy.  From a statistical mechanical
perspective  one might suppose that a distribution is being re-normalized to Boltzmann behavior, but a
formulation thereof is not self-evident.  This result is independent of material-specific properties of the
contents of the cell and belies the notion of local thermodynamic equilibrium.

Rarely  mentioned  is  the  definition  for  temperature  in  non-equilibrium  systems.   For  equilibria,
temperature   appears  as  a  constant  integrating  factor  making  δS=δq/T an  exact  differential.
Equation 19 is an equivalent expression for dissipative systems.  The possibility of a thermodynamic
description requires the existence of an integrating factor  T(r)  and an exact  differential  with path-

11 https://en.wikipedia.org/wiki/Non-equilibrium_thermodynamics
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independent properties.  A necessary and sufficient condition for this factor to exist is discussed in
Margenau and Murphy.12  Geometrically, adjacent isotherms should never touch or intersect.

In any arbitrary neighborhood of an arbitrarily given initial point there is a state that
cannot be arbitrarily approximated by adiabatic changes of state.  13

Our  discussion  has  been  exclusively  within  the  framework  of  Classical  Thermodynamics,  the
phenomenology of dissipative or heat producing processes.  The relationship between classical and
Statistical  Thermodynamics or  statistical  mechanics  is  a  curious  one.   The  latter  is  based  on  the
Boltzmann distribution which applies only to a state of maximum entropy, yet today it is a common
presumption that classical relationships should be derivable from statistical considerations. The raison
d'être for thermodynamics is the path-independence of thermodynamic functions.  A necessary and
sufficient condition for this behavior is description by an exact differential equation with the requisite
integrating factor then defining temperature.

Our focus has been on a two-terminal system with interacting thermal and electrical fluxes, although
we note that additional degrees of freedom with more I/O ports may lead to differing results.  We have
chosen free energy dissipation as the thermodynamic variable of interest rather than entropy formation
for  extremal  reasons.   Within  the  linear  region  near  equilibrium,  both  are  equivalent  as  regards
dissipation,  for  the difference  between energy and free  energy fluxes,  increases  quadratically with
perturbation.

Reciprocity, by definition a relationship of linear coefficients, was found with two phenomenological
methodologies, the stationary nature of a macroscopic dissipation function and the exactness of the
subset of extensive terms within the exact differential for a dissipation function.  The latter implies the
additional restriction that a thermodynamic system be divisible into equivalent thermodynamic sub-
systems and is thus not applicable to a solitary black box.

The mathematics of path-invariant integrals, exact differentials and reciprocal partial derivatives has
long been understood and it seems a bit odd to assert that one needs statistical mechanics to understand
thermodynamic  reciprocity  near  equilibrium.   The  more  challenging  task  would  be  derivation  of
conditions for macroscopic path-independence from  microscopic time-dependent considerations.

“A theory is the more impressive the greater the simplicity of its premises, the more different kinds of
things it relates, and the more extended its area of applicability. Therefore the deep impression that
classical thermodynamics made upon me. It is the only physical theory of universal content which I
am convinced will never be overthrown, within the framework of applicability of its basic concepts.”
—  A. Einstein

November 9, 2017

12 H. Margenau and G.M. Murphy, The Mathematics of Physics and Chemistry, §2.18.
13  http://www.neo-classical-physics.info/thermodynamics.html , C. Carathéodory, “Examination of the foundations of
      thermodynamics,” Math. Ann. 67 (1909), 355-386.
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