
Thermal Dissipation II

The impetus for these notes lies in the marked absence of any serious discussion of thermodynamics in
theories of 'greenhouse' effects.  This seems quite remarkable, for the core problem involves energy
transport in thermal gradients, the very genesis of thermodynamics.  Our original notion was to develop
a  theoretical  formulation  for  'climate  sensitivity'  but,  working  from an axiomatic  base,  it  became
apparent  that  far  more  fundamental  considerations  of  nonlinear,  dissipative  thermodynamics  were
inextricably entwined.  To maintain focus on our initial goal, this discussion is offered as a derivation
for sensitivity, while more general implications are discussed in appended notes.

Our basic thesis  is  that solar energy absorbed by the earth's surface returns to space only after its
maximum possible dissipation within the troposphere, i.e. only when it can no longer perform any work
therein.    This is  the antithesis  of a non-dissipative,  Stefan-Boltzmann radiative description for  a
thermally  transparent  atmosphere  and,  while  apparently  draconian,  its  consequences  are  far  more
benign than current consensus estimates.

We restrict our attention to steady-state processes.  Salient features of such states are constant rates for
the  creation  of  entropy and  the  loss  of  free  energy.   The  latter  equals  the  rate  of  dissipation  for
irreversible systems.  Thermodynamic formulae for such systems entail sums of bilinear products of
extensive vector fluxes and intensive scalar potentials.   For non-divergent flux functionals, volume
integrals rigorously reduce to surface integrals,  i.e. functions depending only on values for potential
and flux over a bounding surface.  This holds true in three dimensions as well as nonlinear systems far
from equilibrium.

As an introductory example, consider thermodynamic dissipation due to electric currents interacting
with  potential gradients.

J F r  = J Q r  r  a

∇⋅J Q r  = 0 b
(1)

The local free energy flux density, JF , is the product of a non-divergent current density,  JQ, and a local
potential, Φ.  The rate of free energy dissipation follows from the divergence theorem,

Ḟ = ∭d ∇⋅J F  r  = ∭ d  J Q r ⋅∇ = ∯d ⋅J Q r  r  (2)

Should the surface have but two iso-potential regions through which current enters and exits, a familiar
result follows,

Ḟ = J 1 1  J 22 = −∣J∣1−2 (3)
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with  the  standard  conventions  that  entering  flux,  J1, is  negative,  exiting  flux,  J2, is  positive  and
Φ1 > Φ2 .  This result is incomplete for the implicit assumption of an isothermal system does not permit
calculation of the rate at which entropy is increasing.1 

Expressions for the thermal dissipation due to energy fluxes in thermal gradients follow from these
postulates:

∇⋅J S r  = J U r ⋅∇ 1
T r   a

J U r  = J F r   T  r J S r  b

∇⋅J U  r  = 0 c 

(4)

Equation 4a is Onsager's expression for local entropy creation by energy fluxes in thermal gradients.2

Equation  4b defines  the  Helmholtz  free  energy flux  and  Equation  4c defines  a  local  steady state
constraint.3

 From the divergence theorem, the rate of entropy production is, cf. Eq. 2,

Ṡ = ∭ d ∇⋅J S  r  = ∭ d  J U  r ⋅∇ 1/T  = ∯d ⋅J U r /T  (5)

For a steady-state flux between two isothermal surfaces, (T1 > T2) , we obtain the Clausius result

Ṡ = J U1/T 1J U2 /T 2 = ∣J U∣1/T 2 − 1/T 1 (6)

observing the conventions of sign for Eq. 3.

A similar approach lets us find the rate of free energy dissipation,

Ḟ = ∭d ∇⋅J F  r  = ∯d ⋅J F r  (7)

 Dividing Eq. 4b by T(r) and then taking its divergence gives, noting Eq. 4c,

∇⋅J U r 

T  r   = ∇⋅J F  r 

T r    ∇⋅J S  r  = J U  r ⋅∇  1
T r  (8)

1 Note C examines the case in which dissipation involves both thermal and electric fluxes.

2 Lars Onsager,  Equation  5.9,  (Phys. Rev.  37, 405, 1931).  More general expressions have been used with additional
terms for material fluxes (S. R. de Groot and P. Mazur,  Non-Equilibrium Thermodynamics”, Dover, 1984).  For the
troposphere, no steady-state material fluxes transit the system, although such fluxes exist as internal degrees of freedom
for energy storage and transport.

3 In Note D, we consider a global steady-state constraint for discussion of fluctuations.
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Comparison with Eq. 4a yields the important result characterizing steady-state dissipation,

∇⋅J F r 

T  r   = 0 (9)

hence,
0 = ∭ d  ∇⋅J F r /T  = ∯d ⋅J F r /T r  (10)

To find the local dissipation function,

 
∭ d  T r ∇⋅J F  r 

T r   = 0

= ∯ d  ⋅J F r  − ∭ d  J F  r 

T r   ⋅∇ T  r 

(11)

and
Ḟ = ∯d ⋅J F r  = ∭d J F r ⋅∇ ln T r  (12)

From Eqs. 7 and 10 for the two interface system,

J F1

T 1


J F2

T 2

= 0 (13)

Ḟ = J F1  J F2 = J F11−
T 2

T 1
 (14)

With JF1<0  and T1>T2, the rate at which free energy dissipates reduces to a function dependent only
on surface parameters.  This result is analogous to  Eq. 3  for electric dissipation.  Both expressions
apply  to  dissipative  transport  processes  and  involve  only  external  observables.   The  reduction  of
volume integrals to surface functions is a consequence of the divergence theorem and the identification
of  non-divergent  internal  flux  functionals.   For  entropy the  functional  is J U r  ; for  free  energy,
J F r /T r  ; for electric currents, J Q r  .

When Eq .14 is applied to each layer of a laminar configuration with the output free energy flux of one
layer  the  input  of  the  next,  total  dissipation  depends  only  on  the  bounding  temperatures  and  is
independent of the intervening thermal profile.  Note that Eq. 14 also describes the work obtained from
a Carnot engine operating reversibly.  Energies lost either by reversible or irreversible processes are
losses of free energy and thermodynamically indistinguishable.

We define thermal sensitivity as the differential of dissipation with respect to  surface temperature.  For
analysis,  it  is  convenient  to  introduce  positive  parameters, W =−Ḟ and J 1=−J F1 so  that  W
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corresponds to watts dissipated and J1  is the free energy flux internal to the warmer interface.4  From
Eq. 14, with  ΔT=T1-T2 

 W
T 1

=
W

 T [ d ln J 1

d ln  T 


T 2

T 1 ] (15)

We have here assumed T2 to be constant, i.e. the cooler boundary is a fixed isotherm.   Let α represent
the  logarithmic  derivative.5  Typical  tropospheric  parameters  are  dissipations  of  240 W/m2 and
temperature  differences  of  70K  (T1=280K,  T2=210K).   For  the  3.7 W/m2 change  in  dissipation
associated with CO2 doubling, there follows a temperature change of 0.62K assuming linearity (α=1),
increasing in the 'worst' case  (α=0) to  1.44K.  Plugging these values for dissipation and temperature
into  Eq. 15  indicates upward internal flux densities of order  1 kWm2,  twice values associated with
radiation, convection apparently being responsible for the difference.

This note is intended to offer a rigorous description of thermal dissipation which follows from the
postulates in  Eq. 4 for a nonlinear dissipative system.  No phenomenological relation is assumed or
implied between energy fluxes and thermal gradients other than a mean negative correlation to ensure
steady-state stability.  The presumption of a steady state, and thereby definition of a thermodynamic
temperature, is itself of prime concern.  Would our conclusions be modified if explicit consideration of
non-divergent mass fluxes were incorporated?  Experience suggests that electric dissipation in a gas-
discharge  tube  follows  the  classical  current-voltage  formula  despite  large  internal  turbulent
fluctuations, and one might then presume the same to hold for a Carnot cell.  The expression derived
for the thermal dissipation coefficient further presumes all incoming energy fully dissipates within the
troposphere before escape.  The basis for this abstraction is the principle that dissipated energy can not
be re-dissipated and is unable to perform additional work within the system – not that it immediately
vanishes as a consequence of dissipation.   

While the original focus of this research sought a clearer formulation of “greenhouse” thermodynamics,
it has evolved into considerations of far more fundamental issues.  That the Carnot Equation is the
basic  expression  for  thermal  dissipation,  the  equivalent  of  the  current-voltage  product  for  electric
dissipation, is not widely recognized.  Nor that it is a consequence of Onsager's expression for entropy
creation in a steady state, requiring no reference to hypothetical devices.  Fluctuation analysis indicates
that steady-state stability implies a minimum dissipation condition, but not so for entropy creation.
Qualitatively this follows from distinctions in the behavior of internal energy and free energy fluxes
when thermal gradients can no longer be treated as linear perturbations.

P. D. Quondam
12/29/2015

4 The immediate relevance of  Eq. 14 to the troposphere may not be apparent as it implies thermal reservoirs at each
interface transparent to all energy fluxes.  In Note B, we show that, should the cooler interface only transmit dissipated
energy, Eq. 14 still applies with J1 including both flux entering the system and the internal reflux forced by a blocking
interface. 

5 Note A indicates how 'feedback' effects may be incorporated into α.
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Note A:
The terms forcings and feedbacks, as currently used, are implied in the dissipation formula

W = J T , q iT  T  (A1)

where  qi represents a set of arbitrary parameters which may or may not be temperature dependent.
Consider a perturbation changing their values while holding the temperature profile fixed:

 W = W∗ ∂ ln J 

∂q i
T

 qi (A2)

and δW, is the forcing associated with qi  (summation over i is implied.)

Feedbacks reflect the temperature dependence of J when all parameters except the temperature profile
are held fixed:

d ln J 

d ln  T 
=  ∂ ln J 

∂ ln  T qi

 ∂ ln J 

∂ qi
T

d q i

d ln T 
(A3)

The first term on the right-hand side defines zero feedback.  As  ΔT → 0,  this term approaches unity,
i.e.  linear dissipation , and nonlinear deviations are assigned to parameters in the second or feedback
term.  Suppose qi describes water content in the atmosphere.  The first factor of the feedback term is
negative, water being a greenhouse gas.  The second factor is positive, as water content increases with
surface temperature, with a net net negative contribution.
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Note B:
The  two-interface  model  described  by  Eq.  14 assumed  thermal  reservoirs  as  boundaries  fully
transparent to energy fluxes.  We now consider a cooler interface transparent only to dissipated energy.
All incoming free energy must internally circulate until dissipated.  To reach a steady state, temperature
gradients must increase until dissipation balances the rate at which free energy is entering the system.
In the adjacent  sketch,  the upward flux stream,  J(z),  is  enhanced by a  local  reflux, K(z),  and the
incremental dissipation is 

 D  z  = −
J  z K  z 

T  z 
T (B1)

with J(z) decreasing as dissipation increases. 

J  z  = J T 1−D  z  (B2)

Thus

T  z 
dD z 
dT z 

− D z  = −J T 1K  z  (B3)

or

d
dT  z  

D z 
T z   = −

J T1K  z 

T  z 2 (B4)

Upon integration,

[D z 
T  z 

−
J T 1

T z  ]
T 1

T 2

= ∫
T 2

T 1

K  z 

T  z 2 dT =
J T 1

T 1

(B5)

When all incoming energy, J(T1), is dissipated, D(T2) = J(T1).    Net flux conservation requires

J  z D z −K  z =J T 1−K  z  = constant (B6)

Hence K(z) must also be constant and total dissipation is thus

DT 2 =
K

T 2

T 1−T 2 (B7)

This result becomes identical to Eq. 14 when K is identified as -JF2 in Eq. 13, i.e. the free energy flux
exiting a cell bounded by two thermal reservoirs is reflected back into the cell, with only dissipated
energy escaping.
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Note C:
This  essay began  with  a  discussion  of  electric  dissipation  in  terms  of  thermodynamic  fluxes  and
potentials.  Electric dissipation involves local heating of volume elements and, to reach a steady state,
this energy is removed from the system by a thermal energy flux, JU(r).  

For a more complete description of electric dissipation, consider an expression similar to Eq. 4b,

J U r   J X r  = J F  r   T r J S r  (C1)

to which an additional flux, JX(r) has been added, representing a generalized non-thermal energy flux
such as an electric current (c.f.  Eq. 1),  an attenuating laser beam, etc.   The steady-state condition,
Eq. 4c, is replaced with

∇⋅J U r   ∇⋅J X  r  = 0 (C2)

While both fluxes are now divergent, their sum is not.

Following Onsager, the entropy changes associated with a volume element resolve into internal and
external terms:

−∇⋅J S int
r  =

1
T

∇⋅J U  r   J X r  = 0 (C3)

∇⋅J Sext
r  = ∇⋅J U r 

T  = ∇⋅J S r  (C4)

The former vanishes in a steady state by virtue of Eq. C2 leaving only the external contribution to their
sum.  Taking the divergence of Eq. C1 after dividing by T and rearranging terms,

∇⋅J F r −J X  r 

T r   = ∇⋅J U r 

T r   − ∇⋅J S r  (C5)

and, equivalent to Eq. 9,

∇⋅J F r −J X  r 

T r   = 0 (C6)

If internal temperature gradients are neglected or, less restrictively, if all flux-bearing surface regions
share a common temperature , Eqs. 1-3 follow from Eq. 1A when JX=JQΦ.
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For a two surface system, steady rates of entropy gain and free energy loss are:

Ṡ = J U1/T 1J U2 /T 2 (C7)

Ḟ = J F1  J F2 = J F1−J X11−
T 2

T 1
  J X1  J X2 (C8)

Consider a 100W heater in a bath thermostatted at 300K,
J U1 = 0
J F1 = J X1 = −100
J X2 = 0
J U2 = −J U1J X1J X2 = 100

  (C9)

JU1 is zero as there is no influx of thermal energy and  JX2   may be set to zero as only the electric
potential difference,  Φ1 – Φ2,   is involved. The rate of entropy creation is thus 100/300 W/K and the
rate of free energy dissipation is simply 100W.  In the general case, the total dissipation is the sum of
values calculated separately for each process, using the temperature profile with both processes active.
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Note D:
Variational thermodynamic expressions for systems outside the linear region near equilibrium remain
an  unresolved  topic  of  fundamental  interest.   Intuitively,  when  parameters  for  a  steady-state  are
modified, one anticipates the transition to a new steady state will occur as quickly as constraints allow
and that the new state will require the minimum input energy needed to sustain it.  Onsager showed
such behavior did characterize near-equilibrium behavior, but further extension has been elusive.

To simplify discussion, we introduce the thermo-dissipation flux defined as

J D r  ≡
J F r 

T r 
(D1)

From Eqs. 4a and 4b it then follows that

T r ∇⋅J D r  = ∇⋅J U r  (D2)

The steady-state constraint, Eq. 4c, is too restrictive for variational considerations as it does  not permit
local flux and thermal fluctuations.  Rather, we adopt the less restrictive integral constraint

∭d  ∇⋅J U r  = ∭d  T r ∇⋅J Dr  = 0 (D3)

Dissipation may then be expressed as

W = −∯d ⋅J F r  = −∭d  ∇⋅J F  r  = −∭ d  ∇⋅J D r T  r 

= −∭ d  J D r ⋅∇ T r 

(D4)

Introducing variations for both JD(r) and T(r),  

W = −∭ d  J D r J D r ⋅∇ T  r T r 
= 〈W 〉  〈W 〉  〈

2 W 〉
(D5)

yields

〈W 〉 = −∭ d  J D r ⋅∇ T r  = −∯d ⋅J D r T  r 

〈W 〉 = −∭ d  J D r ⋅∇ T r  J Dr ⋅∇ T r 
= −∯d ⋅J D

T r  =  〈W 〉

〈
2W 〉 = −∭ d  J D r ⋅∇ T r 

(D6)
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The first-order variation is a secular perturbation depending only on boundary changes and vanishes
when these are prescribed.  The second-order variation reflects  the correlation of internal flux and
thermal  gradient  fluctuations.   A  positive  variation,  and  consequently  a  dissipation  minimum,
characterizes  the  thermodynamic  steady state.   Consider  a  small  region  within  the  integral  which
experiences a random increase in temperature.  Thermal gradients will be directed into this region.  A
correlated outward flux makes a positive contribution to the second variation and, should this behavior
dominate, a macroscopic dissipation minimum follows.  Conversely, a negative contribution indicates
instability, with energy flux drawn towards the 'hot spot' feeding its growth.6

Onsager's description of minimal dissipation is 2:

To relate our results to Onsager's, from Eqs. 4, 

∇⋅J U = 0 = ∇⋅J F  T J U⋅
∇1/T   J S⋅

∇ T (D6)

In the linear region near equilibrium, only the last term is quadratic in ∇T.  When this term is dropped,  

Ḟ = ∯d ⋅J F r  = ∭d J U r ⋅∇ ln T  r  (D7)

differing  from  Eq.  12 by replacement  of  JF(r) with  JU(r).   Neglect  of  the  thermal  gradient  term
increases dissipation, qualitatively because it permits dissipated energy to be continually re-dissipated
and eventually exceed the energy being input to the system!

It  should be noted that this analysis  is  wholly secular.   In real systems, after  an abrupt change in
boundary conditions, fluxes show a lagging temporal response.  For slow changes, one might expect
the  system to  follow a  dissipation  minimum from one  steady state  to  the  next.   Fast  nonsecular
relaxation mechanisms dependent on rates of change fall beyond the scope of this note.

6 It  may be noted  that,  for  the  rate  of  entropy generation be  an  extremal,  similar  analysis  requires  the  steady-state
condition  to be ∭d  ∇⋅J Ur /T = 0 ,  a condition only generally satisfied by an isothermal approximation.
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