
Thermal Dissipation I
By way of introduction I am a physical chemist, now two decades into retirement.  Several years ago, I 
grew  curious  about  the  science  underlying  headlines  of  pending  catastrophe  due  to  increasing 
atmospheric carbon dioxide levels.  From the Internet,  I  learned of a field long on hypothesis  and 
rhetoric, but lacking the analytical rigor of chemistry and physics.  The venerable equations of Navier-
Stokes and Schwarzschild appeared to be the only tools in the arsenal of this science – the former 
dealing with isothermal viscous phenomena and the latter with radiative fluxes  in defined thermal 
profiles.   The dormant chemist  within asked,  “Isn't  this basically a problem of energy transport  in 
thermal gradients?  Where's the  Thermodynamics?”  

Thermodynamics began when Clausius asked what happens when a given amount of heat moves from 
one thermal reservoir to another.  It remains taught today from 'gedanken' experiments with Carnot 
engines,  perpetual  motion  machines,  etc.  In  mature  physical  sciences,  historical  description  has 
evolved to axiomatic generalization, e.g. Lagrangian mechanics.  Carathéodory attempted this in 1909, 
but his efforts remain, at most, a footnote in thermodynamic texts.1

Extensive thermodynamic parameters for equilibrium systems  are conventionally expressed in units 
per  volume.   Non-equilibrium  systems  are  better  described  in  terms  of  vector  fluxes  and  scalar 
potentials.2  Vector thermodynamics allows simple solutions for apparently intractable problems by 
reducing volume integrals to surface integrals when non-divergent  fluxes can be defined.

These notes began as a mathematical search for a thermodynamic “thermal coefficient of dissipation”. 
As analysis progressed, however, it became evident that a much larger field was involved  —  nonlinear 
thermodynamic  systems  far  from  equilibrium,  and  more  descriptive  comments  would  not  be 
unwelcome.  Therefore, these notes are offered in two documents, this, a subjective description of this 
writer's interpretation of the second, rigorous mathematical derivations for thermal dissipation.

Temperature seems a simple intuitive concept.  Its physical definition is not.  It can not be expressed  in 
MKS  units.   Mathematically,  temperature  can  be  axiomatically  defined  as  a  scalar  potential  or 
integration  factor  which  renders  the  path  integral  of  a  function,  i.e. entropy,  between  two  points 
independent of the chosen path.  Entropy then becomes a state function, characterized by an exact 
differential.3,4   For a mechanical system traveling from point A to point B, time reversal returns one to 
point A, but in a thermodynamic system required information is missing.  Baranger depicts this loss as 
an increase of entropy when a complex system passes from a mechanistic regime, through the mists of 
chaos, to a thermodynamic regime.5  The product of temperature and entropy is expressible in MKS 
units.   The  axiomatic  definition  of  temperature  in  terms  of  invariant  path  integrals  raises  several 
questions.  Is there an inconsistency with using temperature to calculate future or past trajectories of a 
system?  What if points A and/or B are themselves moving targets and do not correspond to steady-
states?  
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We confine our attention to steady-states with spatially dependent temperatures defined by a time-
independent scalar potential.  Steady-state behavior is by no means universal.  While we expect the 
luminosity of an incandescent bulb to depend only on an applied potential and not the path by which 
this value is reached, this is not so for the simple neon bulb or, more generally, systems with regions of 
differential  negative  resistance,  e.g. superheated  or  supercooled  states.   We  shall  employ  a  flux-
potential description of thermodynamics and define dissipation to be the rate at which free energy is 
consumed.  Dissipation is commonly associated with the conversion of other forms of energy to heat, 
but the notion that heat itself dissipates as it flows from hot to cold is less widely appreciated.

The dissipation coefficient  of  interest  is  the rate  at  which a steady-state  system dissipates thermal 
energy as a function of the surface temperatures at which this energy enters and leaves the system with 
units  W/m2/K.  This is, in many respects, equivalent to the reciprocal of the  “climate sensitivity” 
parameter discussed in climate science literature.   Our thermodynamic description for tropospheric 
dissipation is quite simple.  As energy enters the system, dissipation creates thermal gradients.  As more 
and more enters, these gradients grow until the rate at which energy enters matches the rate at which it 
dissipates and a steady-state is achieved.  In this limit, only dissipated energy escapes, and undissipated 
energy is continually recycled until drained of its ability to act further within the system.

Before tackling this subject, however, it may be insightful to take a look at the more familiar process of 
electric  dissipation  as  a  vector  thermodynamics  problem.  The  local  free energy flux density in  a 
volume element is given by the product of the current density and electric potential for this element and 
a vector calculus theorem tells us that the total rate at which free energy changes is given by a volume 
integral of the divergence of the free energy flux.  If we further assume the current to be conservative, 
i.e. non-divergent,  the  volume  integral  reduces  to  an  integral  involving  only  surface  fluxes  and 
potentials.  Electric dissipation thus becomes a state function and can be determined without specifying 
the internal paths  traced by electric currents or potential  gradients, or even the physical nature of 
charge carriers within.

Onsager,  in  1931,  used  a  flux-potential  description  as  the  basis  of  a  theory  for  irreversible 
thermodynamics.6  His local expression for the divergence of entropy flux, JS , as the scalar product of 
an extensive flux of internal energy,  JU  , and the gradient of an intensive scalar potential forms the 
axiomatic cornerstone of our methodology.7

∇⋅J S  r  = J U  r ⋅∇  1
T  r  

This expression presumes no phenomenological relationship between local flux density and potential, 
although Onsager did introduce linearity for derivation of his reciprocity theorem, thereby restricting 
results to regions near equilibrium.  If we take the internal energy flux to be locally conservative, 8

∇⋅J U r  = 0

6  Lars Onsager, "Reciprocal Relations in Irreversible Processes. I", Phys. Rev. 37, p. 405 (1931)
7  A more general expression for the rate of entropy creation involves material fluxes and pressure or concentration 

gradients.2  We here consider only closed systems for which only energy fluxes are allowed to cross system boundaries 
and therefore only contribute to steady-state dissipation.  Internal material fluxes remain important for determining the 
rate at which transitions between steady states occur.

8 We later relax this local constraint to an integral constraint in discussion of internal fluctuations and steady-state 
stability.



The rate at which the integrated entropy of the system changes reduces to a surface integral of flux and 
temperature.  It does not depend on knowledge of explicit internal functions for fluxes and gradients or 
their  functional  relationship.   It  is  a  state  function,  dependent  only on  surface  values  of  flux  and 
temperature.  (The relationship between these parameters does depend on system internals.)  In the case 
of transport through two interfacial regions, each of constant temperature,

Ṡ = J U1/T 1J U2 /T 2 = J U21/T 2 − 1/T 1

By convention,  outward  fluxes  are  taken  as  positive  and  entropy  is  increasing  when  T1>T2.  The 
Clausius definition for entropy changes follows from Onsager's expression and the assumption of local 
energy conservation. 

In similar fashion, we may derive an equation for the dissipation of the Helmholtz free energy flux, JF ,

   J U r  = J F r   T  r J S r 

 and dissipation then equals the negative of the normal surface integral of JF(r).

In the steady state, the flux functional JF(r)/T(r) is non-divergent by virtue of the Onsager expression,

∇⋅J F r 
T  r   = 0

It is this relation which is key to our analysis of  nonlinear steady-state phenomena.  For a surface with 
two active regions,

  Ḟ = J F1  J F2 = J F11−
T 2

T 1 
This simple expression for thermal dissipation is no more than a restatement of Carnot's equation for 
the work performed by a thermal engine operating reversibly.  Dissipation is a state function dependent 
only on boundary parameters.  Partition into 'useful' work and 'waste' energy is by human artifice. 

An important corollary is  that  energy can only be dissipated once within a system.  Consider two 
Carnot cells  connected in series with interfacial  temperatures  T1 > T2 > T3.   The first  interface is 
connected to a thermal reservoir and, for the energy flux transfered across this interface, JF = JU.  In a 
steady state, energy conservation requires that  JU be the same for all interfaces.  Not so for JF which 
dissipates as flux flows towards the cooler interface.  If dissipation is to be additive, only free energy 
flux crossing the  T2 isotherm can be dissipated in the second cell,  for only then will the combined 
dissipations of the two cells equal that of a single cell operating between T1 and T3.



As a hypothetical case, consider a thermal cell bounded by two thermal reservoirs at 280K and 210K 
dissipating energy at a steady 240W rate.  The internal energy flux must then be 960W no matter the 
cell's shape or content, be it solid, liquid or gas.  While 960W of energy,  JU , transits the cell, at the 
cooler interface only 720W free energy,  JF2 , remains.   Imagine now that only dissipated energy can 
escape the system at the cooler boundary.  Energy undissipated will accumulate and be recycled until 
building up to a steady state for which dissipated energy escapes at the same rate as free energy enters. 
The Carnot expression still holds provided JF1 includes both recycled and incoming free energy.

These numbers have clearly been chosen to mimic the troposphere, but are the derived flux values 
consistent with known values?  For the thermodynamic dissipative model, the down-to-up flux ratio at 
the surface is   T2/T1  .  MODTRAN calculations for the US Std Atmosphere give surface radiation 
fluxes of 259W/m2 down and 360W/m2 up, close to the ratio assumed above.9  MODTRAN spectra 
show no window suggesting photons emitted from the surface might avoid being absorbed and their 
energy dissipated among various modes of internal energy.  However, the thermodynamic expressions 
apply to the total energy flux which must also include convective transport, dominant near the surface 
(960-360W/m2), and agreement is contingent upon a similar ratio existing for convection.

A function of particular interest is the variation of dissipation with surface temperature.  Differentiation 
of  the above equation leads directly to:

W
T 1

= W
T [ d ln J 1

d ln T 


T 2

T 1 ]
where  W is the rate of dissipation,  J1 = |JF1|  and  ΔT = T1-T2.   For CO2 doubling,  δW is generally 
accepted to be 3.7W/m2 and the major question is what  δT1 shall be.  As estimates of  W,  T1 and T2, 

we'll take 240W/m2, 280K and 210K.  J1 may depend explicitly on parameters other than temperature 
which are themselves temperature dependent.  If the derivative is partial, i.e. these parameters are held 
constant, one has 'transient' sensitivity, if total, 'equilibrium' sensitivity (which has nothing to do with 
equilibrium in the thermodynamic sense.)   Our default  assumption is unit  slope for a log-log plot. 
Larger  slopes  lead to  lesser  temperature changes  (negative feedback in  the climatologist's  jargon), 
lesser slopes to greater changes (positive feedback).  These are, however capped by the  T2/T1 term. 
Only when the derivative changes sign, a hypothetical negative resistance regime, is it theoretically 
possible for positive feedbacks to have catastrophic consequences and the very stability of a steady 
state and the meaning of temperature become questionable.  For slopes 1 to 0,  δT  ranges 0.62K to 
1.44K.  For slopes less than unity, surface temperature increases will be less than 0.62K.10

This brings us to the question, “What determines the stability of a steady state?”  So far, we have 

9 D. Archer, http://forecast.uchicago.edu/Projects/modtran_form.html
10 That these changes are considerably below 'consensus' predictions is largely a consequence of constraints applied to the 

Carnot equation.  We have assumed a constant  T2 implying the cooler interface represents a specific isotherm, not a 
physical surface.  The 'consensus' constraint is that  ΔT is invariant, the 'convective adjustment'.  Literally, this leads to 
an  unstable  situation with surface  cooling by added  greenhouse gases.   A constraint  closer  to   'consensus'  models 
assumes a constant T2/T1 ratio.  Then the second term disappears.  The only argument of which I'm aware justifying the 
'convective adjustment'  harks  back to the notion of 'convective equilibrium' once offered by Kelvin and shown by 
Maxwell to be inconsistent with a state of thermodynamic equilibrium. (Theory of Heat, p. 300,  1872 ed.)   Should a 
non-equilibrium state exist with an invariant thermal gradient, we would have to assume that an infinitesimal gradient 
change results in an infinite flux change, overwhelming any possible greenhouse effect. 
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presumed a non-divergent flux of internal energy to define the steady-state.  To explore fluctuations, we 
will require only that the total internal energy of the system be fixed, i.e. only that the surface integral 
of internal energy flux be zero.  For convenience, we define a dissipation flux as

J D r  ≡
J F r 
T r 

The volume integral for dissipation with variations for both JD(r) and T(r) included is

W = −∭ d  J D r J D r ⋅∇ T  r T r 
= 〈W 〉  〈W 〉  〈2 W 〉

and the second-order variation becomes

〈2W 〉 = −∭ d  J D r ⋅∇T r 
while the first-order variation reduces to a surface integral, δ<W>.  Dissipation will be a minimum if, 
on average, a negative correlation exists.11  Qualitatively, hot spots should then cool rather than grow. 
This need not be true everywhere as, for instance, condensation within a supersaturated vapor.  The 
existence of a minimum implies that nature does its best to minimize thermal gradients and, therefore, 
surface temperatures.

One of the major challenges in discussing climate sensitivity is its presentation as a 'wicked' function of 
a litany of uncertainties.  Our analysis reveals a simple surface function, with no explicit indication of 
such  parameters.   This  solution  is  a  first-order  perturbation  of  an  existent  state,  using  observable 
properties of that state as input, thereby implicitly including all internal parameters in its basis.  The 
reduction  from  a  thermodynamic  space  expressed  in  statistical  coordinates,  e.g. isotherms,  to 
corresponding physical coordinates lies beyond the limits of current analytic abilities.  Similarly, does 
the resolution of  energy fluxes into convective and radiative components.  Reduction of nonlinear 
thermodynamic  quantities  to  a  molecular  level  remains  one  of  the  challenges  facing  21st century 
thermodynamics.

Our  thermal  dissipation  model  for  climate  sensitivity  is  clearly  bare-bones.   Energy  enters  the 
troposphere from the surface and remains there, circulating about until dissipated, i.e. unable to do any 
further work within the troposphere.   Only dissipated energy escapes.  Eventually,  with increasing 
temperatures,  a  steady-state  is  reached  where  dissipation  matches  energy influx.   This  suffices  to 
provide a formal analytic expression for climate sensitivity and greenhouse effects  without a more 
detailed resolution into the physical natures of energy fluxes, etc.

The assumption of a steady state is of theoretical concern.  It is closely linked to the existence of a 
temperature function which renders path integrals for state functions path-independent.  The steady-
state properties of liquid water, both equilibrium and dissipative, are the same no matter whether once 
ice or steam.  The dissipation of a 100W light bulb is independent of the path by which its operating 
potential  is  reached.   But  we  recognize  that  other  physical  systems  exhibit  memory effects  over 
anthropic temporal scales.  Transitions between steady states are yet more hypothetical.  Should they 
proceed slowly, one might suppose a path through a continuum of steady state configurations but, if 

11 Ilya Prigogine, TIME, STRUCTURE AND FLUCTUATIONS, Nobel Lecture, 8 December, 1977 



otherwise, is the concept of a temperature still meaningful?

Perhaps our most important observations are that: (1) if the troposphere is a dissipative system, the 
consequences of positive feedback are severely restricted by lapse rate increases;  (2) a variational 
theorem  keeps  surface  temperatures  to  the   minimum  value  consistent  with  constraints;  (3) 
thermodynamics is the invisible 800lb gorilla in the climate science arena pending materialization.
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