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In 1931, Onsager published a seminal mathematical description for the thermodynamics of irreversible
processes.1  In addition to showing that reciprocal relations,  i.e. Rij = Rji , followed from assumptions
of microscopic reversibility, he derived thermodynamic expressions for rates of entropy production and
dissipation.  Recently we have  proposed  an  alternative  approach  and it  is  our  present  purpose  to
compare  derivations.   We first  review Onsager's  work  with  a vector-tensor  notation  and equation
numbering mirroring his paper.

Onsager describes the rate of entropy generation in terms of internal energy fluxes, J⃗ (r ) , within a
system given an internal temperature profile, T(r).  This profile defines thermodynamic 'forces', X⃗ (r ) ,

X⃗ (r ) = −
∇⃗ T (r )
T (r )

= T ∇⃗ (1/T ) 5.1

These  are  assumed  to  be  linear  sums of  fluxes  described by a  tensor  of  given phenomenological
constants ,

X⃗ (r ) = ∥R∥⋅ J⃗ (r ) 5.1

A quadratic local dissipative function is then introduced 
2 T (r )ϕ(r ) ≡ J⃗ (r )⋅ X⃗ (r ) ≡ J⃗ (r)⋅∥R∥⋅ J⃗ (r ) 5.3 & 5.5

Dimensionally,  X⃗ (r )  may be expressed in units of meter -1 ,  J⃗ (r )   in watts/meter 2, and T ϕ(r )  in
watts/meter 3.

On partial differentiation with respect to one component of J⃗ (r ) holding T(r) constant,

2T
∂ϕ

∂ J k

= e⃗ k⋅∥R∥⋅J⃗ + J⃗⋅∥R∥⋅e⃗k = ∑
j

(Rkj+R jk) J j = 2 X k  5.4

The rates of entropy production by local heating and energy transport are, respectively,

Ṡ (J ) ≡ −∫ dV
∇⃗⋅J⃗

T
     ;     Ṡ*

( J n) ≡ ∫dV ∇⃗⋅( J⃗T ) 5.7 & 5.8

Their total becomes

Ṡ (J ) + Ṡ*(J n) ≡ ∫dV J⃗⋅∇⃗ (1/T ) = 2∫ dV ϕ(r ) ≡ 2Φ(J , J ) 5.9 & 5.10

Dimensionally, Φ  may be expressed in watts/kelvin.

1 Lars Onsager, Reciprocal Relations in Irreversible Processes. I, Phys. Rev. 37, p. 405 (1931)
      https://journals.aps.org/pr/pdf/10.1103/PhysRev.37.405
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Varying the function Ṡ (J ) + Ṡ*
(J n)− Φ(J , J )  while holding T(r) constant,

(∂[ Ṡ ( J )+ Ṡ*
( J n)− Φ( J , J )]
∂ J k

)
T (r )

= ∫dV (∇ k(1/T )−
∂ϕ

∂ J k ) = 0  

Thus, Ṡ + Ṡ *
−Φ , is an extremum for variations of J⃗ (r )  with T (r)  fixed and a maximum if ∥R∥  is

positive definite as,  from Eq. 5.4,

2T
∂

2
ϕ

∂ J k
2 = 2 Rkk > 0

Onsager  then argues:
1. Should the surface be adiabatically insulated, Ṡ *

(J n)=0  and therefore Ṡ (J ) −Φ(J , J )  is a
maximum.    

2. For stationary flow,  Ṡ (J )=0  and  Ṡ *
(J n) − Φ(J , J )  is a maximum.  Entropy production is

also a maximum as Ṡ *
(J n) = 2Φ(J , J ) . 

3. For a steady state, ∮ J n dΩ = 0 , Ṡ *
(J n) is prescribed and therefore Φ(J , J )  is a minimum.

These conclusions, those of maximum entropy production in particular, have  proved exceptionally
confusing.   They suggest  that  this  variational  function  equals  an undefined constant  of  magnitude
Φ( J , J ) .  Others have  also considered temperature variations, but their basic parameters remain these
introduced by Onsager.2   An analysis in the Appendix of generic variational functions of this form
indicates the appropriate functions for entropy production and energy dissipation differ and that it is the
latter which corresponds to the Onsager function.

Although not mentioned in Onsager's paper, it is helpful to introduce fluxes, J⃗ S (r ) and J⃗ F (r ) , for the
extensive functions of entropy and free energy as defined in the following equations:

∫ dV
∇⃗⋅ J⃗ (r )

T (r )
= ∫dV ∇⃗⋅(J⃗T ) − ∫ dV J⃗⋅∇⃗(1/T )

= ∫dV ∇⃗⋅(J⃗T ) − ∫ dV ∇⃗⋅J S(r )

= ∫dV ∇⃗⋅(J⃗−T J⃗ S
T )

= ∫dV ∇⃗⋅(J⃗ F(r )T )

 

The rates at which entropy is produced and free energy dissipated then equal
〈 Ṡ 〉 = ∫dV ∇⃗⋅J⃗ S(r ) = 2∫dV ϕ(r )

−〈 Ḟ 〉 = −∫ dV ∇⃗⋅J F (r ) = 2∫ dV T (r )ϕ(r )
.

2    Gyarmati, I. (1970). Non-equilibrium Thermodynamics, Springer, Berlin; translated, by E. Gyarmati and W.F. Heinz.
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Our alternative formulation, specific to steady states, is expressed through three coupled differential
functions, two vector, one scalar, J⃗ U (r ), J⃗ S (r )  and T (r) , fluxes of internal energy and entropy, and
temperature.3 Solutions  are  based  on  the  equivalence  of  volume  and  surface  integrals  for
thermodynamic functions. They follow from three constraints:

1. The Second Law of Thermodynamics: This law, as expressed by Onsager, may be written as

∇⃗⋅ J⃗ S (r ) = J⃗U (r )⋅∇⃗ (1/T (r )) (1)

It then follows that the rate of entropy production 

〈 Ṡ 〉 ≡ ∭ d V ∇⃗⋅J⃗ S (r ) = ∭d V J⃗U (r )⋅∇⃗ (1/T (r ))

= ∯d σ⋅
J⃗ U (r )
T (r )

− ∭ dV
∇⃗⋅J⃗ U (r )

T (r )

(2)

Equivalently, Eq. 1 may written as

∇⃗⋅( J⃗ U (r )−T (r ) J⃗ S(r )
T (r ) ) =

∇⃗⋅J⃗U (r )
T (r)

= ∇⃗ ⋅( J⃗ F (r )T (r ) ) (3)

or

∇⃗⋅ J⃗ F(r ) = ∇⃗⋅ J⃗U (r) +
J⃗ F (r )⋅∇⃗ T (r )

T (r)
(4)

where we have defined a free energy flux as J⃗ F (r )≡ J⃗ U (r ) − T (r ) J⃗ S (r )

The rate of free energy dissipation is

− 〈 Ḟ 〉 =∭ d V ∇⃗⋅J⃗ F(r ) = ∭d V ∇⃗ ⋅JU (r ) + ∭dV J⃗ D (r )⋅∇⃗ T (r )

= ∯d σ⃗ ⋅ J⃗ F(r) = ∯d σ⃗ ⋅ J⃗ D (r ) T (r)
(5)

with J⃗ D(r) ≡ J⃗ F(r )/T (r ) .

2. The First Law of Thermodynamics:   Our second constraint considers the conservation of energy.
From Eq. 2, assuming a local constraint, ∇⃗⋅ J⃗U (r )= 0 , 

 〈 Ṡ 〉 = ∭ d V J⃗U⋅∇⃗ (1/T (r )) = ∯d σ⃗ ⋅( J⃗U (r )/T (r )) (6)

From Eq. 5, with a less restrictive global constraint, ∭dV ∇⃗ ⋅ J⃗ U (r ) = ∯d σ⃗ ⋅ J⃗U (r ) = 0

− 〈 Ḟ 〉 =∭ dV J⃗ D(r )⋅∇⃗ T (r ) = ∯d σ⃗ ⋅ J⃗ D(r ) T (r ) (7)

In both instances, the volume integral of the product of a vector function and the gradient of a scalar
function equals the surface integral of the product of the pair of functions.

3 https://quondam.000webhostapp.com/Thermal_Dissipation_V.pdf
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3.  The Thermodynamic State:  The essence of the thermodynamic state lies in the assumption that
extensive thermodynamic functions are described by exact differential equations.  Such equations have
path-independent solutions.  Consider an experiment in which we apply prescribed temperatures to a
set of contacts on a system and measure the resulting energy fluxes.  Should we repeat this experiment,
we would hope to get the same results no matter the order of application.4  Should this prove the case,
these properties must depend only on surface parameters.  In classical thermodynamics, temperature is
defined as  an integrating  function  rendering the  product  T dS an  exact  differential.   Qualitatively,
information about the path by which a thermodynamic state has been reached is subsumed as entropy.

Consider  a  general  function  of  the  form, 〈Ψ 〉 = ∭ d V A⃗(r )⋅ B⃗(r ) with  variations  in  both

δ A⃗(r )  and δ B⃗(r ) .

〈δΨ〉 = ∭ d V [δ A⃗(r )⋅ B⃗(r )+ A⃗(r )⋅δ B⃗(r )]

= δ∭ d V [ A⃗(r )⋅ B⃗(r )]

= δ 〈Ψ〉

〈δ
2
Ψ〉 = ∭ d V δ A⃗(r )⋅δ B⃗(r )

 (8)

If 〈Ψ 〉 is  also  equal  to  a  surface  integral  of  A⃗(r )  and  B⃗(r )  as  in  Eqs.  6 and 7 and A⃗(r ) is
constrained by boundary conditions,  δ A⃗(r )= 0  on the surface, then a path-independent solution for
B⃗(r )  also requires  δ B⃗(r )= 0 on the surface.   Thus, 〈δΨ〉 = 0  and  〈Ψ 〉  an extremum.  The

acuity of these extrema depends upon the internal correlation of flux and thermal gradients,

〈δ
2 Ṡ 〉 = −∭ dV

δ J⃗U (r )⋅δ∇⃗ T (r )

T (r )2

〈δ
2 Ḟ 〉 =−∭dV δ J⃗ D (r )⋅δ∇⃗ T (r )

(9)

If, on average, a local positive thermal fluctuation is quenched by an energy outflux, both entropy
production  and dissipation will be minima.  Otherwise, the system becomes unstable and will change
until a steady state is reached compatible with the prescribed boundary parameters.

4 Physical systems exhibiting memory or hysteresis  are not going to satisfy the  thermodynamic requirements of path-
independence.
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Although both approaches share similar constraints, they are not equivalent in even the most trivial of
cases.  For discussion, we shall refer to an Onsager description as Case  I and our latter as Case  II.
Consider a homogeneous, one-dimensional system with boundary temperatures T1 and T2.  For Case I,

ϕ(x )= −
J 0

2 T 2

∂T
∂ x

〈Ṡ 〉 = 2∫ dxϕ( x) = − J 0∫ dx
1

T 2

∂T
∂ x

= − J 0∫
T 1

T 2

d (1 /T ) = J 0[ 1
T 2

−
1

T 1 ]
〈 Ḟ 〉 = 2∫ dx T ϕ( x) = J 0 ∫dx

1
T

∂T
∂ x

= J 0∫
T1

T2

d ln (T ) = − J 0 ln (T 1/T 2)

(10)

For  II, from Eqs. 6 and 7,

〈 Ṡ 〉 = ∭ d V J⃗U⋅∇⃗(1 /T ) = ∯d σ⃗⋅( J⃗ U (r )/T (r )) = J U1[ 1
T 2

−
1

T 1
]

0 = ∭dV ∇⃗ ⋅ J⃗ D (r ) = ∯ d σ⋅ J⃗ D(r ) =
J F1

T 1

+
J F2

T 2

− 〈 Ḟ 〉 = J F1 + J F2 = J F1(1 −
T 2

T 1
) = J U1(1 −

T 2

T 1
)

(11)

Entropy production proves identical for both cases, whereas,  I allows a dissipation in excess of the
incoming energy flux.  For  II, dissipation is given by Carnot's equation and is always less than the
incoming flux.5

Case I is formulated in terms of a local description of entropy production in terms of energy flux and
temperature.  Existence requirements for a scalar temperature are not mentioned.  Case II focuses on
the  dissipation  of  free  energy and  the  conversion  of  volume  integrals  (local)  to  surface  integrals
(global).

Case  I presumes  a  linear  local  relationship  between  flux  and  gradients  with  constant  coefficients
independent of position, ∥R∥ .  Case II makes no assumptions as to either such a relationship or  its
homogeneity.

Case  I describes dissipation in terms of a non-divergent internal flux J⃗ (r) , whereas  II introduces a
non-divergent function J⃗ D(r) = J⃗ F(r )/T (r )  and fluxes of entropy and free-energy.

Case  I is  not  restricted  to  steady-states  and  suggests  possibilities  for  describing  the  evolution  of
thermodynamic systems.  Imagine we can internally observe a system as it transits from steady-state A
to steady-state B following a change in external forces.  If we then undo this change we expect the
system to return to state A, but will its return path be the same?  A Principle of Maximum Entropy
Production has frequently been discussed, based on Case I, to little effect.6  Case II denies a possibility
on the basis of path-invariance to describe non-steady states.  

5 It may be noted that the two formulae for dissipation are identical to first-order in ΔT .
6 https://en.wikipedia.org/wiki/Extremal_principles_in_non-equilibrium_thermodynamics
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Finally,  we note that thermodynamic reciprocity,  the title subject of Onsager's  paper,  is  implicit  in
functions  described by path-independent  or  exact  differential  equations.   Formally,  thermodynamic
functions  are  described  as  sums  of  products  of  an  extensive  function  with  a  conjugate  intensive
function, e.g. Ji and Xi ,

F = ∑
i

J i X i (12)

Consider a differentiation of this function and collection of all extensive differentials on one side,
δ F = ∑

i

(δ J i X i+J i δ X i)

δ F − ∑
i

(δ J i X i) = ∑
i

J i δ X i

(13)

Should all extensive differentials proportionally scale, each side is itself an exact differential and
∂ J i

∂ X j

=
∂ J j

∂ X i

(14)

This is no more than an extension of Maxwell's equations for equilibria to non-linear, dissipative steady
states.  One may infer that principles of microscopic reversibility and macroscopic path-independence
are not unrelated.

At equilibrium, it is generally accepted that entropy is maximum and the rates of entropy production
and dissipation, both positive functions, have minimum values of zero.  For steady states, of which
equilibrium is a member, a  Principle of the Least Dissipation of Energy (Lord Raleigh) is also now
commonly accepted.  For entropy production the situation is less clear.  Onsager has concluded that the
rate of steady-state entropy production is a maximum (Eq. 6.4).  His defined functions are equivalent to
those analyzed in the Appendix,

Ṡ (J ) + Ṡ*
(J n) = ∫dV Φ1(X ,Y )   ;  2 Φ(J , J ) = ∫ dV Φ2(X ,Y ) (15)

and his variational function is also equivalent for γ=2 ,

 δ [ Ṡ ( J )+ Ṡ*
( J )− Φ(J ,J )] = 0 = δ∫ dV [2 Φ1 −Φ2] (16)

Arguments regarding maximum entropy production are predicated on the condition that this variational
function is a stationary maximum for variations of both  S and  Φ , whereas this is only true for the
latter.  For the former, the appropriate variational function derived in the Appendix is7

δ ∫dV [Φ1 − 2 Φ2] = 0 = δ [ Ṡ ( J )+ Ṡ *
( J )− 4 Φ(J , J )] (17)

and leads to a stationary state of minimum entropy production.  In 1945, Prigogine proposed a Theorem
of Minimum Entropy Production for steady states.8,9  While the notion that transitions between steady
states should occur as quickly as possible is attractive,  there appears no theoretical justification for
such an assertion beyond Onsager's arguments.

7 Both variational functions follow from the ratio of 1st order variations of Φ1  and Φ2 at their intersection.
8 I. Prigogine,  Modération et transformations irréversibles des systèmes ouverts. Bulletin de la Classe des Sciences., 

Académie Royale de Belgique. 31: 600–606 (1945).
9 S.R. de Groot & P.M. Mazur, Non-Equilibrium Thermodynamics,Dover (1984), pp. 46-48.
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All  previous  variational  methodologies  have  been  based  on  the  Rayleigh  dissipation  function,
∑ J i(r)⋅X i (r ) , a sum of products of linearly conjugate 'fluxes' and 'forces' .  Case II differs in two
fundamental respects.  It differentiates between fluxes of internal energy, JU , and fluxes of free energy,
JF.  While the former are relevant for entropy production, only the latter are subject to dissipation.  This
is basically why Eqs.10 imply an impossible Case I steady-state dissipation rate greater than the input
flux.  Secondly, Case II is independent of assumptions of a homogeneous linearity in local flux-force
relationships, i.e. ∥R∥ .  In practice, one is free to choose a 'model' local relationship and an arbitrary
thermal profile of adjustable coefficients and integrate to calculate a total dissipation.  One may then
vary these coefficients in search of a dissipation minimum.

The objective of variational analysis  is to provide a methodology for solving otherwise intractable
problems.   As  a  hypothetical,  nontrivial  example  we  explored  the  interaction  of  radiative  and
'convective' energy fluxes in a one-dimensional system between 300K and 200K.10  The former fluxes
are  ∇⃗ T 4 functions, the latter  ∇⃗ T functions, each characterized by a distance scale chosen to make
these  fluxes  of  comparable  magnitude.11  With  boundary  temperatures  fixed,  minimum  global
dissipation  implies a  minimum total  energy flux.  The latter  is  the sum of  three fluxes,  radiation,
convection and a hybrid term resulting from their coupling.12  As these fluxes of energy flow from hot
to cold, their ratios change while their sum remains constant.  The problem thus reduces to finding that
profile for which the total energy flux is a minimum and independent of position.   For the variational
profile, T (ζ) = T (0) + [T (l )−T (0)]⋅[ξ + ξ(1−ξ)(a+bξ+c ξ2

+d ξ
4
)] ,

Jtot rms a b c d
14.37734 17.481%
14.36359 2.230% -0.28600
14.37070 0.185% -0.24980 -0.09680
14.37062 0.014% -0.25350 -0.07460 -0.02476
14.37061 0.011% -0.25354 -0.07483 -0.02469 0.00039

Table 1: Polynomial coefficients minimizing rms variations of Jtot .

Initially,  a  linear  profile  was  assumed  and flux  deviations  are  horrendous  although the  calculated
dissipation appears good to four significant figures when compared with a convergent limit.  Adding a
quadratic term reduces deviations an order of magnitude, a cubic term another order, etc.  It should be
noted that these parameters have been chosen to minimize flux variations and dissipation approaches a
minimum value in a convergent limit.13

As  an  alternative  to  this  profile,  we  also  examined  the  single  parameter  exponential  function,
T n

(ζ) = T n
(0)+ [T n

(l) − T n
(0)] ξ  , exact for undissipated radiation when n=4 and for convection

when n=1.  A minimum was found with n=2.49, Jtot=14.3709 and rms=0.257%.  Although for a profile
of quite different functional form, these values are virtually identical to five significant figures with
those for a two parameter polynomial function.

10 http://quondam.000webhostapp.com/Thermal_Dissipation_III.pdf
11 In a 'real' problem these scales might be expected to depend on density and temperature.
12 The hybrid term is most significant when the cell length is commensurate with the radiation absorption distance.
13 No constraint equalizing the fluxes at each boundary was made and is presumably responsible for the non-monotonic

variation of Jtot  far from this limit.
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While the basic concepts of classical thermodynamics assign a quantitative significance to temperature,
entropy and free energy, their reductionist interpretation is lacking – save for one particular steady
state, equilibrium.  The Boltzmann Equation provides a molecular interpretation for this state in terms
of a distribution over energy levels, but this exclusive state is one of maximum entropy and uniform
temperature.   That  the  factor  kT appears  in  descriptions  of  non-equilibrium phenomena  is  simply
because first-order  perturbation  theory invokes  distributions  of  an  unperturbed state.   The  ratio  of
populations for any two energy levels suffices to define a temperature, but it is only for equilibrium that
all thermometers agree.  Classical thermodynamics assumes temperature to be an integrating factor
rendering physical properties of a thermodynamic state path-independent, given a small set of boundary
parameters.  Reductionist interpretations for the differences between fluxes of energy and free energy
in dissipative systems are presently not available.  A principle of local thermodynamic equilibrium is
often  postulated.   But,  while  differences  of  parameters  such  as  density  and  temperature  within  a
microscopic region may be thereby reduced, gradients and corresponding fluxes of mass and energy are
not.

A yet more serious challenge remains understanding the kinetics of transitions between steady states.
Time was introduced by Onsager through definitions of entropy production (Eqs. 5.7 and 5.8), but all
phenomenological properties are encompassed in the time-independent  ∥R∥  matrix.  The electrical
analog of a Case  I thermodynamic system is a complex network of microscopic ohmic resistances.
Globally the network is still going to exhibit frequency-independent ohmic dissipation, whether I2R or
E2/R.  For a non-ohmic Case II system, dissipation remains IE.  For an electrical network, it is reactive
elements of capacitance and inductance that shape the temporal dependence of transitions between
steady states.  Their thermodynamic analogs correspond to local accumulations of energy in terms of
heat (scalar fluctuations of temperature) or rotational energy fluxes (convective eddies).  Such elements
have yet to be parametrized within the framework of classical thermodynamics.

Finally,  we note  that  the  stability  of  a  steady-state  is  determined  by the  2nd derivative  of  a  local
correlation function such as 〈δ J⃗ D (r)⋅δ∇⃗ T (r)〉 (Eqs. 9).  One might anticipate that transitions in
and out of steady-states should favor paths of least resistance or minimal curvature.  Linear dissipation
theory (Kubo) is based on time-dependent correlation functions such as 〈δ J⃗ D (t)⋅δ∇⃗ T ( t+τ)〉 and
these would seem a logical path to describing time-dependent thermodynamic phenomena.  Minimum
dissipation implies that  steady states are  those requiring the least  work to sustain.   To be proved,
however, is that nature also seeks the easiest path from A to B.  Does time define this path?
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APPENDIX

Consider two functions defined by two other functions X(r) and Y(r),
Φ1(X ,Y ) = Y⋅F (X )

Φ2(X ,Y ) = X⋅G(Y )
 (A1)

 
which intersect for functions X0(r) and Y0(r) ,14

X 0 G(Y 0)=Y 0 F (X 0) (A2)

Let γ  be the ratio of the first-order  variations of  Φ2  and  Φ1  at  their  intersection.   As a second
condition at this intersection,15  

γδΦ1(X , Y )− δΦ2(X , Y ) = 0 (A3)

Differentiating,

δ X [γ Y
∂F (X )

∂ X
− G(Y )]+ δY [γ F (X ) − X

∂G(Y )

∂Y ] = 0 (A4)

and at the intersection,

Y 0δ X [γ (∂ F (X )

∂ X )
X =X 0

−
F (X 0)

X 0 ]+ X 0δY [γG (Y 0)

Y 0

−(∂G(Y )

∂Y )
Y =Y 0

] = 0 (A5)

For constrained variations with δ X = 0 , stationary solutions require

(∂G (Y )

∂Y )
Y=Y 0

= γ
G(Y 0)

Y 0

(A6)

Differentiating once more

(∂
2G (Y )

∂Y 2 )
Y=Y 0

= γ(γ−1)
G (Y 0)

Y 0
2

 (A7)

Constrained variations with δY = 0  will be stationary when

(∂F (X )

∂ X )
X =X 0

= (1/ γ)
F (X 0)

X 0

  (A8)

and

(∂
2 F (X )

∂ X 2 )
X =X 0

=
(1−γ)

γ
2

F (X 0)

X 0
2

 (A9)

14 Subsequently  X and  Y shall  be associated  with temperature and flux and  Φ1 and  Φ2 with entropy production and

dissipation.  
15 Eq. A2 is separable in X and Y at the intersection, decoupling their first-order variations but  with independent γ values

for δ X  and δY variations.
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To apply this theorem to Equations 5.9-5.10,

∫ dV J⃗⋅∇⃗ (1/T ) = ∫ dV
J⃗ ⋅∥R∥⋅ J⃗

T
(A10)

let
X = 1/T   ;  Y = ∣J∣ (A11)

and, 

F (X ) = e⃗ J⋅∇ (1/T ) = −(1/T 2
) e⃗J⋅∇⃗ T

G(Y ) = J⃗ ⋅∥R∥⋅ J⃗ = ∣J∣2
(e⃗ J⋅∥R ∥⋅ e⃗J )

 (A12)

For variations with δ X = 0 ,

 ∂G
∂∣J∣

= 2
G
∣J∣

(A13)

Thus  γ = 2  and  G(Y0) is  a  minimum.  As the matrix ∥R∥ is  positive  definite,  G(Y 0)>0 ,  and
dissipation also a minimum. 

For variations with δY = 0 ,  let

T (x ) = T 0 + (∂T
∂ xJ )T=T0

x J
(A14)

with xJ a local displacement in the direction of flux flow.  Then

F (X ) = −(1/T
2
)(∂T
∂ x J )T=T 0

= −(∂T
∂ x J )X=X 0

X
2 (A15)

Thus

(∂F (X )

∂ X )
X =X 0

= (1/ γ)
F (X 0)

X 0

= −2 (∂T
∂ xJ

)X =X 0

X 0 = −(1/ γ)(∂T
∂ x J

)X =X 0

X 0

(A16)

and γ = 1/2 .  Both F(X0) and its second derivative are positive, and  F(X0) is therefore a minimum.   

Entropy production is given by

〈 Ṡ 〉 = ∫ dV J⃗⋅∇⃗ (1/T ) = ∫dV Y F (X )
(A17)

and a minimum should ∣J∣ be constant along lines of flux, i.e. ∇⃗⋅ J⃗ (r) = 0 .
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