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Conventional derivations of the Stefan-Boltzmann equation are based on the Plank expression for the
radiative energy density in vacuo with temperature a variable determined by an external agency.  The
equation predicts a material property, black-body radiation, independent of physical properties specific
to the material.  The intent of this note is to offer an alternative derivation based on the Einstein A and
B coefficients which are material specific and lead to the Stefan-Boltzmann result only in the limit of
material thicknesses much larger than radiation absorption depths.

The  Einstein  A and  B coefficients  describe,  respectively,  rates  for  spontaneous  and  field-induced
transitions between an energy level, n, and a higher level, m:

dN nm /dt = N nBnm nm (1)

dN mn /dt = N m{Amn  Bm n nm }

The former process leads only to emission from thermal excitations while the latter corresponds to
absorption and stimulated emission by electromagnetic fields.1

The Planck energy density over a frequency interval, δν, for a system at thermal equilibrium is
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Detailed balance of Eqs. 1 requires,
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or
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Comparison of Eqs. 2 and 4 then shows

Am n =
8 h nm

3

c3 Bm n = 1 /nm

Bnm = Bmn = Bnm

(5)

The significance of the Einstein coefficients is a general relationship between spontaneous emission
and optical absorption spectra and the proportionality of A and B implies their similarity.  

1 To clarify the dimensionality of variables in terms of energy, length and time (ε, l, t):  N(l-3), A(t-1), B(l3/ε t2), ρ(εt/l3) and 
J( ε/,l2).



As  a radiative beam travels through a material medium, its energy density,  ρ(v)dv,  decreases due to
field-induced transitions with a characteristic distance, ℓ,
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Using Eq. 5,
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As a model, we shall suppose that black-body radiation arises from the spontaneous decay of thermally
excited states within a medium.  The probability that this radiation escapes depends upon the ratio of its
path length to the  distance ℓnm.

The  fraction  of  isotropic  radiation  within  a  cone  of
thickness dθ is

2 x r d / 4 r 2 = ½sin d   (9)

The total rate of energy radiation in a bandwidth given
by integration over  θ and z is thus
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where we have assumed infinite limits for x and z.  Making use of Eq. 8,
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2 h nm
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and the three material  dependent parameters,  τnm, λnm and Nm are no longer  present  because of the
proportionality of τnm and N ℓnm .  This expresses the radiance in watts/meter2/Hz.  More conventionally,
the radiance is expressed as  watts/meter2/cm-1, in which case

J  nm =
2 h nm
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Integration over all frequencies, using the identity
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yields the Stefan-Boltzmann result
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The upper integration limits in Eq. 10 for both θ and z are assumptions.  For the former, π/2 presumes
no internal reflections.  Formally, we might choose a critical angle giving a sin2( θc) correction factor.
Should we set  a thickness, d, for the upper limit of Eq. 10,

J  nm   =
h nmN m

2nm
∫

0

 /2

sin d ∫
0

d

dz e−z / ℓnmcos 

=
h nmℓnmN m

4nm
F d /ℓnm

(15)

where
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with  E3(x) an exponential integral function.2  F(d/  ℓnm) is a finite thickness correction for the Stefan-
Boltzmann equation.  Limiting approximations are:
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For small x
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as the residue of Γ(-2) balances the polynomial pole at n=3.  The thin layer correction to Eq. 10 is thus
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2 http://mathworld.wolfram.com/En-Function.html.  An online calculator is available at 
http://keisan.casio.com/exec/system/1180573425.

http://mathworld.wolfram.com/En-Function.html
http://keisan.casio.com/exec/system/1180573425


and 50% of the unattenuated emissions arising within the layer, the remainder exiting through the other
interface.  As E3(0)=0.5 and the function decreases monotonically with increasing argument, emissions
for  a  finite  material  thickness  will  always  be  less  than  Stefan-Boltzmann  values.   For  d=  ℓnm,

E3(1)=0.10969... and emission spectra will show dips at frequencies where absorption is weak and the
sample transparent.

A common simplification in radiation calculations is to replace the cos(θ) factor in Eq. 15 by a mean
value, i.e.
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When =2 , the solutions coincide at x=0 and approach unity for large x. 

F2 x = 1 − exp−2 x (21)

For values of x near unity, however, F2(x) can be nearly 14% higher as shown in the plot below.
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