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Conventional derivations of the Stefan-Boltzmann equation are based on the Plank expression for the
radiative energy density in vacuo with temperature a variable determined by an external agency. The
equation predicts a material property, black-body radiation, independent of physical properties specific
to the material. The intent of this note is to offer an alternative derivation based on the Einstein 4 and
B coefticients which are material specific and lead to the Stefan-Boltzmann result only in the limit of
material thicknesses much larger than radiation absorption depths.

The Einstein 4 and B coefficients describe, respectively, rates for spontaneous and field-induced
transitions between an energy level, n, and a higher level, m:
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The former process leads only to emission from thermal excitations while the latter corresponds to
absorption and stimulated emission by electromagnetic fields.’

The Planck energy density over a frequency interval, dv, for a system at thermal equilibrium is

8T hv’ 1

p(v) = 3 I~ KT 2
c e —1

Detailed balance of Egs. I requires,
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Comparison of Egs. 2 and 4 then shows
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The significance of the Einstein coefficients is a general relationship between spontaneous emission
and optical absorption spectra and the proportionality of A and B implies their similarity.

1 To clarify the dimensionality of variables in terms of energy, length and time (¢, [, £): N(I°), A(t"), B(F/e £), p(et/F’) and
J(elD).



As a radiative beam travels through a material medium, its energy density, p(v)dv, decreases due to
field-induced transitions with a characteristic distance, ¢,
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As a model, we shall suppose that black-body radiation arises from the spontaneous decay of thermally
excited states within a medium. The probability that this radiation escapes depends upon the ratio of its
path length to the distance ¢, .

The fraction of isotropic radiation within a cone of
thickness df is
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The total rate of energy radiation in a bandwidth given
by integration over 6 and z is thus
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where we have assumed infinite limits for x and z. Making use of Eq. &,
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and the three material dependent parameters, z,., 4., and N,, are no longer present because of the
proportionality of 7,,, and N £,,,. This expresses the radiance in watts/meter’/Hz. More conventionally,
the radiance is expressed as watts/meter?’/cm™, in which case
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Integration over all frequencies, using the identity
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yields the Stefan-Boltzmann result
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The upper integration limits in Eq. /0 for both 6 and z are assumptions. For the former, 7/2 presumes

no internal reflections. Formally, we might choose a critical angle giving a sin’( 6,) correction factor.
Should we set a thickness, d, for the upper limit of Eq. 10,
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with E;(x) an exponential integral function.> F(d/ {,,) is a finite thickness correction for the Stefan-
Boltzmann equation. Limiting approximations are:
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as the residue of 7(-2) balances the polynomial pole at n=3. The thin layer correction to Eq. 10 is thus
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2 http://mathworld.wolfram.com/En-Function.html. An online calculator is available at
http://keisan.casio.com/exec/system/1180573425.
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and 50% of the unattenuated emissions arising within the layer, the remainder exiting through the other
interface. As E3(0)=0.5 and the function decreases monotonically with increasing argument, emissions
for a finite material thickness will always be less than Stefan-Boltzmann values. For d= ¢,
E3(1)=0.10969... and emission spectra will show dips at frequencies where absorption is weak and the
sample transparent.

A common simplification in radiation calculations is to replace the cos(6) factor in Eq. 15 by a mean
value, i.e.
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When o=2 |, the solutions coincide at x=0 and approach unity for large x.
F,(x) =1 — exp(—2x) (21)

For values of x near unity, however, F>(x) can be nearly 14% higher as shown in the plot below.
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