
The Adiabatic Lapse Rate

Thermodynamics  is  a  funny  subject.  The  first  time  you  go  through  it,  you  don't
understand it at all. The second time you go through it, you think you understand it,
except for one or two small points. The third time you go through it, you know you don't
understand it, but by that time you are so used to it, it doesn't bother you any more.

Arnold Sommerfeld

Atmospheric thermal profiles, the subject of this essay, are characterized by their gradients or lapse
rates.  Absent a gravitational field, systems in thermodynamic equilibrium are isothermal with a zero
lapse rate.   In  1862, Kelvin proposed that  the observed decrease in  atmospheric  temperature with
altitude could be explained by an isentropic state induced by earth's gravitational field which he labeled
Convective  Equilibrium.   Shortly  thereafter,  both  Maxwell  and  Boltzmann  showed  that  velocity
distribution functions were not altered by gravity and equilibrium remained isothermal,1 . . . until the
1960's, when the isentropic model was resurrected by climate scientists, evidently unaware of its short-
lived  past  history.   Today,  the  adiabatic  lapse  rate  remains  the  cornerstone  of  global  warming
calculations with thermal gradients independent of greenhouse gases.

The purpose of this note is to examine in closer detail the thermodynamics of the adiabatic lapse rate.
We begin by showing that the isothermal profile is the profile of maximum entropy in the presence of a
gravitational field.  Our solution starts with an isothermal profile and will show any adiabatic change to
another profile results in a decrease of entropy.  For this profile,

T ( z) = T 0

ρ(z ) = ρ1(z )  
(1)

and the density profile,  ρ1( z) , arbitrary.  For adiabatic transformation to an alternative profile, mass
and total energy, gravitational plus thermal, must be conserved.

Mass = ∫ρ( z)dz

Energy = g ∫ρ(z )zdz + ∫ρ( z)dz ∫
T 0

T ( z)

C P (T )dT
 (2)

CP(T) is the heat capacity at constant pressure per unit mass (Joules/kg/K).  This choice allows a system
of fixed mass freedom to expand vertically.  As a zero reference we choose all mass at T0  and z=0. 
For our initial profile,

E1 = g∫ρ1(z ) z dz

S 1 = ( g /T 0)∫ρ1( z) z dz
 (3

For our target profile,
T ( z) = T 2(z )   ;  T 2(0) = T 0

ρ(z ) = ρ2( z)
 

(

1 Hyperlinks to these papers are often best found by searches for direct quotations and detailed descriptions are given in 
Appendix I.
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We next find the entropy difference of the new profile by first isothermally changing the density of the
isothermal profile, ρ1( z) , to that of the target profile, ρ2(z ) .  The associated changes in energy and
entropy are

Δ Ea = g ∫(ρ2( z)−ρ1(z ))z dz

Δ S a = (g /T 0)∫(ρ2(z )−ρ1( z)) z dz = Δ Ea/T 0

 (4)

We then adjust the temperature profile to that of the target profile,

Δ Eb = ∫ρ2(z )dz ∫
T 0

T (z)

CP (T )dT

Δ S b = ∫ ρ2(z )dz ∫
T 0

T (z ) C P(T )dT

T

 (5)

and then combine these results with the adiabatic constraint
Δ Ea + Δ Eb = 0  (6)

to obtain

Δ S a + Δ S b = −∫ ρ2(z )dz ∫
T 0

T (z )

C P (T )[1T 0

−
1
T ]dT ≤ 0  (7)

Any adiabatic deviation from the isothermal profile reduces total entropy and the isothermal profile is
therefore that of maximum entropy.

Total entropy for the perturbed profile is
S 2 = S1 + Δ S a + Δ S b  (8)

From Eqs 4, 5 and 6
d S1

d z
= g ρ1 z /T 0

d Δ S a

d z
= (g /T 0)(ρ2(z )−ρ1( z)) z

d Δ S b

d z
= C P ρ2(z ) ln(T (z )/T 0)

 (9)

hence
d S2/d z = ρ2( z)[ g z /T 0 + CP ln(T ( z)/T 0)]  (10)

This  derivative  is  important,  for  positive  values  are  a  necessary  condition  for  the  absence  of
convection.2  The isentropic or adiabatic profile is therefore

 T (z )=T 0 e−g z /C P T0  (11)

This is one member of a set of exponential lapse-rate functions ,

T (z ) = T 0 e−κ z /T0  (12)

The characteristic distance describing these profiles, T0/κ , is of order 40 km, and linear expansion of
the exponential, T (z ) ≃ T 0− κ z , is appropriate within the troposphere.  

2 Fluid Dynamics, “§4. The condition that convection is absent”, L.D. Landau and E.M. Lifshitz, Addison-Wesley (1959)
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To evaluate Eq. 10, we note
ρ(z ) = P (z )/ RT (z )
ln (P (z )/ P0) = −( g / Rκ)(eκ z /T 0− 1)

 (13)

Given the parameters
g = 9.80665 m/s2

R = 287.06 J/kg/K
CP = 1509 J/kg/K (g / Cp= = 6.5 K/km)
P0 = 102890.0 Pa = J/m3,

T0 = 285.0 K

At the chosen adiabatic lapse rate, 6.5 K/km, entropy density gradients are zero but they are also zero
for  all  constant  lapse  rate  profiles  at  the  surface,  with linearity implying an  entropy quadratically
varying with altitude.  The 2nd Law defines the relationship between entropy formation, energy flux and
temperature,

dS
dt

= JU ⋅∇(1 /T ) =
dS
dz

dz
dt

 (14)

In the region dS/dz>0, energy flux will be towards cooler temperatures, vanishing as  dS/dz approaches
zero.  At the  adiabatic lapse rate, the energy flux becomes zero.  Textbooks frequently offer a 'parcel'
rationalization for finite flux within an isentropic system.  Should we adiabatically raise a thermally
insulated parcel,  e.g.  a balloon, slowly enough to avoid viscous dissipation, no net work is required.
But, the volume previously occupied by the parcel will then be filled by the surrounding isentropic
fluid leaving the system and its center of gravity unchanged.  No climatologist today, no matter their
opinions on GHG issues, questions the role of the adiabatic lapse rate.  It is the third rail of climatology
and the only sanctioned rationale for thermal gradients.
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Some might well argue that  the adiabatic lapse rate has been experimentally confirmed by radiosonde
measurements. Consider the following plot:

It  certainly looks like a  6.5 K/km  lapse rate  should be a  good enough approximation.   But,  other
properties for this same calculation beg to differ.

These plots  were obtained with a model based on prescribed boundary values for temperature and
fluxes (vide infra).

Properties of especial interest are differential in character.  We shall define Thermal Sensitivity as the
ratios of changes in total flux due to small changes in boundary temperatures.  An unresolved subject of
substantial interest is the differential relation between energy  flux and temperature,

δ J U = (∂ J U

∂T 1
)T 2

δT 1 + (∂ J U

∂T 2
)T1

δT 2  (15)

with T1 the surface temperature and T2 the temperature at the top of the troposphere.  We distinguish
two  cases,  Case  I:  δT 2=0 and  Case  II:  δT 2=δT 1 .   In  the  former,  boundary  temperatures  are
independent variables, in the latter they are coupled by an unspecified constraint such as a preordained
lapse  rate.   It  proves  an  interesting  experiment  to  explore  a  set  of  eight  profiles  having identical
boundary  values  for  flux  and  temperature,  but  capricious  variations  of  radiative  and  convective
parameters betwixt.  
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Sensitivities were calculated for 240 W/m2 total energy fluxes between 285K and 220K boundaries and
0.01K changes for  calculation of partial derivatives:

Case I:   4.39  ±  0.21 Watts/m2/K  
Case II:  1.33  ±  0.38 Watts/m2/K 

The  T1 partial  is  always  positive,  the  T2 negative,  hence the reduced sensitivity for  Case II.   The
conventional definition of climate sensitivity is the surface temperature change for a CO2 doubling of
3.7 W/m2 ,

Case I:   0.84K ±  0.04K
Case II:  2.78K ±  0.79K

Case I describes models for which thermal gradients are influenced by greenhouse gases.  Case II
describes models for which thermal gradients are independent of  CO2 ,  e.g.  the  adiabatic lapse rate.
Currently, the majority of climatologists will assert increases beyond  1.5K constitute an irreversible,
existential threat for  mankind.  What's most surprising about Case I, however, is not that the warming
lies well outside doomsday scenarios, but the insensitivity to internal details, implying global warming
is primarily a boundary value problem.  One of the more extreme profiles explored was strongly biased
towards convection in the lower troposphere, lapse rates varying dramatically, yet the plot of altitude
vs. temperature appears close enough to linear to  elude radiosonde detection.  (Case I Sensitivity:  4.08
W/m²/K)
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When these experiments were repeated for the set of eight profiles with boundary fluxes doubled, other
parameters unchanged,

Case I:   8.47  ±  0.48 Watts/m2/K 
Case II:  1.96  ±  0.68 Watts/m2/K 

Case  I  results  argue  a  sensitivity  proportional  to  total  energy  flux  density  with  a  proportionality
coefficient of  55-57K,  not dissimilar to the  65K temperature differential  assumed.  As a test,  eight
calculations for a linear model varying T1  from 265 to 300K, total flux fixed at  240 Watts/m2  yielded
proportionality coefficients of 53.3 ±2.0K.  Empirically, 

T 1 Sensitivity=γ J total / (T 1−T 2)  (16)

with the dimensionless parameter γ = 1.22 ±0.04 .  

It should be emphasized this result is not based on physical observations but a summary of numerous
solutions to a non-trivial mathematical model.   The HBC model begins with given boundary values for
temperature and both radiative and convective flux.3  Temperature is then described internally as a
polynomial of altitude, typically with seven variable coefficients.  Internally, fluxes for radiation and
convection  are  defined  as  the  product  of  the  temperature's  gradient  and  hypothetical  polynomial
functions of altitude matching boundary values.  Typically, these functions may exaggerate variations
well  beyond rational  physical  expectation.   The temperature  coefficients  are  found by minimizing
deviations of the calculated total flux from its mean value and sensitivities from changes in total flux to
0.01K changes in boundary temperatures.  Despite internal arbitrariness, Eq. 16 suggests sensitivity can
be estimated to within a few percent wholly from boundary values for temperature and flux.

The current obsession over carbon dioxide boils down to the ratio of change in thermal energy exiting
the earth's atmosphere  to a perturbation in its surface temperature.  Temperature is a funny property.  It
is not a physical property expressible in units of mass, distance and time, but defined by the 2nd Law,
jointly with another funny property, entropy, in terms of a true physical property, energy.

∇⋅J S (r ) = JU (r )⋅∇( 1
T (r ) )  (17)

What  makes  this  definition  unique  is  that  entropy  is  required  to  be  an  exact  differential  and
thermodynamic states thus independent of the paths by which they have evolved.  Thermodynamic
states have no memory of their  origins,  that  information having been subsumed as entropy.   As a
benefit, we need not specify 1024 initial parameters to obtain reproducible results for a mole of material.
As a detriment, we have no handle for defining temperature in time-dependent situations.

We began this note showing total entropy for an isothermal system to be a maximum, independent of
gravitational fields.  This is an integral property.  In non-equilibrium systems, models of local equilibria
are often invoked for differential volume elements.  Such approximations fail, however, should gradient
properties be relevant.  Equation 10 describes the local entropy of a volume element and reflects the
collected wisdom of the climate science community in its Radiative-Convective-Equilibrium models.
These models typically lead to Case II sensitivities requiring draconian countermeasures, essentially
because the adiabatic lapse rate assumption prescribes perturbations for disparate surfaces.  

3 pdq2021.000webhostapp.com/HBC_Model.pdf
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Dissipation is another funny property.  It is the surface integral of ∇⋅J F , , the divergence of the flux of
free energy , and entirely a boundary value function.  For thermodynamic steady states

Dissipation = J U

T 1− T 2

T 1
 (18)

is  the  constant  work  required  to  forestall  relaxation  towards  isothermal  equilibrium.   For  the
troposphere, 27% of a transiting 240 Watts/m2 is continuously being dissipated.  Nevertheless, it seems
inevitably  assumed  that  the  Boltzmann  distribution,  rigorous  only for  isothermal  systems,  applies
throughout.  Dissipation is a minimum for thermodynamic steady states and a minimum for JU  when
boundary temperatures are fixed.  This is illustrated by changing the number of variable coefficients in
T(z). 

 
If JU is fixed by solar output, thermodynamics will minimize T1 – T2.  Given the choice for removing
energy from the surface should nature favor a horizontal  or a vertical  path?  Clouds are a current
bugaboo for the climate modeler.  Do they inhibit radiation or facilitate convection?  Might they be
implicit among the Case I models analyzed?

How  can  we  assert  CO2 doubling  will  raise  surface  temperatures  0.8K  when  RCE models  have
difficulty establishing where the decimal point is?  The latter assert, without justification, the adiabatic
profile to be an equilibrium property.  Unconstrained, a system would then relax to this profile.  Both
Maxwell and Boltzmann, over a century ago, disproved this notion and Maxwell even described how to
construct a perpetual motion device from two columns of different gases were it  otherwise.   RCE
models (Case II) create a thermal discontinuity at the tropopause without considering its aftereffects on
the stratosphere.  Equilibrium systems do not dissipate energy, the troposphere does.  The adiabatic
lapse rate defines a necessary condition for the absence of convection.  Its role after  a system has
entered  a convective state is unclear.  The greatest difficulty with RCE models, however, is finding a
non-zero value for convective flux.   It  is  not a  function of the lapse rate for which it  is  assumed
responsible.  Case I models are the clear favorite with respect to dissipation.  They assume first-order
perturbations  of  tropospheric  boundary  temperatures  are  independent  with  thermal  gradients
determined by the dissipation of both radiative and convective fluxes.

If nothing more, our discussion should demonstrate a distinction between physical and thermodynamic
models.  Temperature and entropy play no roles in kinetic models for the solar system or the carbon
dioxide molecule.  They are, however, the sine qua non for models describing thermodynamic states. 
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Coefficients Mean Flux Std. Dev.
1 240.679669 9.529233
2 239.430446 0.460400
3 239.688475 0.106538
4 239.582352 0.012007
5 239.556492 0.001852
6 239.547983 0.000480
7 239.542772 0.000083
8 239.540624 0.000017
9 239.539490 0.000004
10 239.539703 0.000005



   

APPENDIX I

At the January 1862 meeting of the Manchester Literary and Philosophical Society, a paper, On the 
Convective Equilibrium of Temperature in the Atmosphere, by Professor Wm. Thomson was read by 
Dr. Joule: “When all the parts of a fluid are freely interchanged and not subject to the influence of 
radiation and conduction, the temperature of the fluid is said by the Author to be in a state of 
convective equilibrium.” 

In May 1866, J.C. Maxwell responds: On the Dynamical Theory of Gases, Philosophical Transactions 
of the Royal Society of London, Vol. 157, p. 86 (1867), “The left-hand side of equation (147), as sent 
to the Royal Society, contained a term, the result of which was to indicate that a column of air, when 
itself, would assume a temperature varying with the height, and greater above than below. The mistake 
arose from an error in equation (143). Equation (147), as now corrected, shows that the flow of heat 
depends on the variation of temperature only, and not on the direction of the variation of pressure. A 
vertical column would therefore, when in thermal equilibrium, have the same temperature throughout.”

In October 1875, Ludwig Boltzmann writes: Über das Wärmegleichgewicht von Gasen, auf welche 
äußere Kräfte wirken, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen, Vol. 72-II, p. 443 
(1876), “Aus dieser Formel folgt, daß trotz der Wirksamkeit der äußeren Kräfte für die Richtung der 
Geschwindigkeit irgend eines der Moleküle jede Richtung im Raume gleich wahrscheinlich ist, ferner 
dass in jedem Raumelemente des Gases die schwindigkeitsvertheilung des Gases genau ebenso 
beschaffen ist, wie in einem Gase von gleicher Temperatur, auf das keine Aussenkräfte wirken. Der 
Effect der äusseren Kräfte besteht blos darin, dass sich die Dichte im Gase von Stelle zu Stelle 
verändert und zwar in einer Weise, welche schon aus der Hydrostatik bekannt ist.”  

Google's translation: “From this formula, it follows that in spite of the effectiveness of the external 
forces for the direction of the velocity of any of the molecules, each direction in space is equally 
probable, furthermore that in each space element of the gas the velocity distribution of the gas is 
exactly the same as in a gas of same temperature, on which no external forces act. The effect of the 
external forces consists merely in the fact that the density in the gas changes from place to place in a 
manner which is already known from hydrostatics.” 
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